Fandom

Calendar Wiki

Julian calendar

429pages on
this wiki
Add New Page
Talk0 Share

The Julian calendar is a reform of the Roman calendar introduced by Julius Caesar in 46 BC (708 AUC). It took effect the following year, 45 BC (709 AUC), and continued to be used as the civil calendar in some countries into the 20th century. The calendar has a regular year of 365 days divided into 12 months, as listed in Table of months. A leap day is added to February every four years. The Julian year is, therefore, on average 365.25 days long.

The calendar year was intended to approximate the tropical (solar) year. Although Greek astronomers had known, at least since Hipparchus, that the tropical year was a few minutes shorter than 365.25 days, the calendar did not compensate for this difference. As a result, the calendar year gained about three days every four centuries compared to observed equinox times and the seasons. This discrepancy was corrected by the Gregorian reform, introduced in 1582.

The Julian calendar has been replaced by the Gregorian calendar in all countries which formerly used it as the civil calendar. Most Christian denominations have also replaced it by the Gregorian calendar as the basis for their liturgical calendars. However, most branches of the Orthodox Church still use the Julian calendar for calculating the dates of moveable feasts, including Easter (Pascha). Some Orthodox churches have adopted the Revised Julian calendar for the observance of fixed feasts, while other Orthodox churches retain the Julian calendar for all purposes.[1] The Julian calendar is still used by the Berber people of North Africa, and on Mount Athos.

Table of monthsEdit

Months (Roman) Lengths before 45 BC Lengths as of 45 BC Months (English)
Ianuarius[2] 29 31 January
Februarius 28 (leap years: 23 or 24) 28 (leap years: 29) February
Mercedonius/Intercalaris 0 (leap years: 27) (abolished)
Martius 31 31 March
Aprilis 29 30 April
Maius 31 31 May
Iunius[2] 29 30 June
Quintilis[3] (Iulius) 31 31 July
Sextilis (Augustus) 29 31 August
September 29 30 September
October 31 31 October
November 29 30 November
December 29 31 December

MotivationEdit

The ordinary year in the previous Roman calendar consisted of 12 months, for a total of 355 days. In addition, a 27-day intercalary month, the Mensis Intercalaris, was sometimes inserted between February and March. This intercalary month was formed by inserting 22 days after the first 23 or 24 days of February; the last five days of February, which counted down toward the start of March, became the last five days of Intercalaris. The net effect was to add 22 or 23 days to the year, forming an intercalary year of 377 or 378 days.[4]

According to the later writers Censorinus and Macrobius, the ideal intercalary cycle consisted of ordinary years of 355 days alternating with intercalary years, alternately 377 and 378 days long. On this system, the average Roman year would have had 366¼ days over four years, giving it an average drift of one day per year relative to any solstice or equinox. Macrobius describes a further refinement wherein, for 8 years out of 24, there were only three intercalary years, each of 377 days. This refinement averages the length of the year to 365¼ days over 24 years. In practice, intercalations did not occur schematically according to these ideal systems, but were determined by the pontifices. So far as can be determined from the historical evidence, they were much less regular than these ideal schemes suggest. They usually occurred every second or third year, but were sometimes omitted for much longer, and occasionally occurred in two consecutive years.

If managed correctly this system allowed the Roman year, on average, to stay roughly aligned to a tropical year. However, since the Pontifices were often politicians, and because a Roman magistrate's term of office corresponded with a calendar year, this power was prone to abuse: a Pontifex could lengthen a year in which he or one of his political allies was in office, or refuse to lengthen one in which his opponents were in power.[5]

If too many intercalations were omitted, as happened after the Second Punic War and during the Civil Wars, the calendar would drift rapidly out of alignment with the tropical year. Moreover, because intercalations were often determined quite late, the average Roman citizen often did not know the date, particularly if he were some distance from the city. For these reasons, the last years of the pre-Julian calendar were later known as "years of confusion". The problems became particularly acute during the years of Julius Caesar's pontificate before the reform, 63–46 BC, when there were only five intercalary months, whereas there should have been eight, and none at all during the five Roman years before 46 BC.

The reform was intended to correct this problem permanently, by creating a calendar that remained aligned to the sun without any human intervention. This feature proved useful very soon after the new calendar came into effect. Varro used it in 37 BC to fix calendar dates for the start of the four seasons, which would have been impossible only 8 years earlier.[6] A century later, when Pliny dated the winter solstice to December 25 because the sun entered the 8th degree of Capricorn on that date,[7] this stability had become an ordinary fact of life.

Context of the reform Edit

The approximation of 365¼ days for the tropical year had been known for a long time but was not used directly since ancient calendars were not solar (except in Egypt). It was the mean length of the year in the octaeteris, a cycle of 8 lunar years popularized by Cleostratus (and also commonly attributed to Eudoxus) which was used in some early Greek calendars, notably in Athens. The same value was the basis of the 76 years cycle devised by Callippus (a student under Eudoxus) to improve the Metonic cycle. The length of the year in the cycle of Meton was less accurate: about 30 minutes too long (1 day in 48 years).

In Egypt, a fixed year of 365 days was in use, drifting by one day against the sun in four years. An unsuccessful attempt to add an extra day every fourth year was made in 238 BC (Decree of Canopus). Caesar probably experienced the solar calendar in that country. He landed in the Nile delta in October 48 BC and soon became embroiled in the Ptolemaic dynastic war, especially when Cleopatra managed to be "introduced" to him in Alexandria. Caesar imposed a peace, and a banquet was held to celebrate the event. Lucan depicted Caesar talking to a wise man called Acoreus during the feast, stating his intention to create a calendar more perfect than that of Eudoxus[8] (Eudoxus was popularly credited with having determined the length of the year to be 365¼ days).[9] But the war soon resumed and Caesar was attacked by the Egyptian army for several months until he achieved victory. He then enjoyed a long cruise on the Nile with Cleopatra before leaving the country in June 47 BC.[10]

Caesar returned to Rome in 46 BC and, according to Plutarch, called in the best philosophers and mathematicians of his time to solve the problem of the calendar.[11] Pliny says that Caesar was aided in his reform by the astronomer Sosigenes of Alexandria[12] who is generally considered the principal designer of the reform. Sosigenes may also have been the author of the astronomical almanac published by Caesar to facilitate the reform.[13] Eventually, it was decided to establish a calendar that would be a combination between the old Roman months, the fixed length of the Egyptian calendar, and the 365¼ days of the Greek astronomy. According to Macrobius, Caesar was assisted in this by a certain Marcus Flavius.[14]

Julian reform Edit

Realignment of the yearEdit

The first step of the reform was to realign the start of the calendar year (January 1) to the tropical year by making 46 BC (708 AUC) 445 days long, compensating for the intercalations which had been missed during Caesar's pontificate. This year had already been extended from 355 to 378 days by the insertion of a regular intercalary month in February. When Caesar decreed the reform, probably shortly after his return from the African campaign in late Quintilis (July), he added 67 more days by inserting two extraordinary intercalary months between November and December.[15] These months are called Intercalaris Prior and Intercalaris Posterior in letters of Cicero written at the time; there is no basis for the statement sometimes seen that they were called "Undecimber" and "Duodecimber".[16] Their individual lengths are unknown, as is the position of the Nones and Ides within them.[17] Because 46 BC was the last of a series of irregular years, this extra-long year was, and is, referred to as the "last year of confusion". The new calendar began operation after the realignment had been completed, in 45 BC.[18]

Changes to the monthsEdit

The Julian months were formed by adding ten days to a regular pre-Julian Roman year of 355 days, creating a regular Julian year of 365 days. Two extra days were added to January, Sextilis (August) and December, and one extra day was added to April, June, September and November. February was not changed in ordinary years, and so continued to be the traditional 28 days. Thus, the ordinary (i.e., non leap year) lengths of all of the months were set by the Julian calendar to the same values they still hold today. (See Sacrobosco's theory on month lengths below for stories purporting otherwise).

Macrobius states that the extra days were added immediately before the last day of each month to avoid disturbing the position of the established religious ceremonies relative to the Nones and Ides of the month.[19] However, since Roman dates after the Ides of the month counted down toward the start of the next month, the extra days had the effect of raising the initial value of the count of the day after the Ides. Romans of the time born after the Ides of a month responded differently to the effect of this change on their birthdays. Mark Antony kept his birthday on the 14th day of January, which changed its date from a.d. XVII Kal. Feb. to a.d. XIX Kal. Feb., a date that had previously not existed. Livia kept the date of her birthday unchanged at a.d. III Kal. Feb., which moved it from the 28th to the 30th day of January, a day that had previously not existed. Augustus kept his on the 23rd day of September, but both the old date (a.d. VIII Kal. Oct.) and the new (a.d. IX Kal. Oct.) were celebrated in some places.

The inserted days were all characterised as dies fasti (F -- see Roman calendar).[20] The character of a few festival days was changed. In the early Julio-Claudian period a large number of festivals were decreed to celebrate events of dynastic importance, which caused the character of the associated dates to be changed to NP. However, this practice was discontinued around the reign of Claudius, and the practice of characterising days fell into disuse around the end of the first century AD: the Antonine jurist Gaius speaks of dies nefasti as a thing of the past.[21]

IntercalationEdit

The old intercalary month was abolished. The new leap day was dated as ante diem bis sextum Kalendas Martias, usually abbreviated as a.d. bis VI Kal. Mart.; hence it is called in English the bissextile day. The year in which it occurred was termed annus bissextus, in English the bissextile year.

There is debate about the exact position of the bissextile day in the early Julian calendar. The earliest direct evidence is a statement of the 2nd century jurist Celsus, who states that there were two halves of a 48-hour day, and that the intercalated day was the "posterior" half. An inscription from AD 168 states that a.d. V Kal. Mart. was the day after the bissextile day. The 19th century chronologist Ideler argued that Celsus used the term "posterior" in a technical fashion to refer to the earlier of the two days, which requires the inscription to refer to the whole 48-hour day as the bissextile. Some later historians share this view. Others, following Mommsen, take the view that Celsus was using the ordinary Latin (and English) meaning of "posterior". A third view is that neither half of the 48-hour "bis sextum" was originally formally designated as intercalated, but that the need to do so arose as the concept of a 48-hour day became obsolete.[22]

There is no doubt that the bissextile day eventually became the earlier of the two days for most purposes. In 238 Censorinus stated that it was inserted after the Terminalia (February 23) and was followed by the last five days of February, i.e. a.d. VI, V, IV, III and prid. Kal. Mart. (which would be the 24th to 28th days of February in a common year and the 25th to the 29th days in a leap year). Hence he regarded the bissextum as the first half of the doubled day. All later writers, including Macrobius about 430, Bede in 725, and other medieval computists (calculators of Easter) followed this rule, as did the liturgical calendar of the Roman Catholic Church until 1970. However, Celsus' definition continued to be used for legal purposes. It was incorporated into Justinian's Digest[23], and in the English statute De anno et die bissextili of 1236, which was not formally repealed until 1879.

The effect of the bissextile day on the nundinal cycle is not discussed in the sources. According to Dio Cassius, a leap day was inserted in 41 BC to ensure that the first market day of 40 BC did not fall on January 1, which implies that the old 8-day cycle was not immediately affected by the Julian reform. However, he also reports that, some time before AD 44, the market day was changed at times to avoid a conflict with a religious festival; this may indicate that a single nundinal letter was assigned to both halves of the 48-hour bissextile day by this time, so that the Regifugium and the market day might fall on the same date but on different days. In any case, the 8-day nundinal cycle began to be displaced by the 7-day week in the first century AD, and dominical letters began to appear alongside nundinal letters in the fasti.[24]

During the late Middle Ages days in the month came to be numbered in consecutive day order. Consequently, the leap day was considered to be the last day in February in leap years, i.e. February 29, which is its current position.

Sacrobosco's theory on month lengthsEdit

The Julian reform set the lengths of the months to their modern values. However, a 13th century scholar, Sacrobosco, proposed a different explanation for the lengths of Julian months which is still widely repeated but is certainly wrong.[25] According to Sacrobosco, the original scheme for the months in the Julian calendar was very regular, alternately long and short. From January through December, the month lengths according to Sacrobosco for the Roman Republican calendar were:

30, 29, 30, 29, 30, 29, 30, 29, 30, 29, 30, 29.

He then thought that Julius Caesar added one day to every month except February, a total of 11 more days, giving the year 365 days. A leap day could now be added to the extra short February:

31, 29/30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30.

He then said Augustus changed this to:

31, 28/29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

so that the length of Augustus (August) would not be shorter than (and therefore inferior to) the length of Iulius (July), giving us the irregular month lengths which are still in use.

There is abundant evidence disproving this theory. First, a wall painting of a Roman calendar predating the Julian reform has survived,[26] which confirms the literary accounts that the months were already irregular before Julius Caesar reformed them:

29, 28, 31, 29, 31, 29, 31, 29, 29, 31, 29, 29.

Also, the Julian reform did not change the dates of the Nones and Ides. In particular, the Ides were late (on the 15th rather than 13th) in March, May, July and October, showing that these months always had 31 days in the Roman calendar, whereas Sacrobosco's theory requires that March, May and July were originally 30 days long and that the length of October was changed from 29 to 30 days by Caesar and to 31 days by Augustus. Further, Sacrobosco's theory is explicitly contradicted by the 3rd and 5th century authors Censorinus and Macrobius, and it is inconsistent with seasonal lengths given by Varro, writing in 37 BC, before Sextilis was renamed for Augustus in 8 BC, with the 31-day Sextilis given by an Egyptian papyrus from 24 BC[27], and with the 28-day February shown in the Fasti Caeretani, which is dated before 12 BC.

Leap year errorEdit

Although the new calendar was much simpler than the pre-Julian calendar, the pontifices initially added a leap day every three years, instead of every four. According to Macrobius, the error was the result of counting inclusively, so that the four-year cycle was considered as including both the first and fourth years; perhaps the earliest recorded example of a fence post error. After 36 years, this resulted in three too many leap days. Augustus remedied this discrepancy by restoring the correct frequency. He also skipped three leap days over 12 years in order to realign the year. Once this reform was complete, intercalation resumed in every fourth year and the Roman calendar was the same as the Julian proleptic calendar.[28]

The historic sequence of leap years in this period is not given explicitly by any ancient source, though Scaliger established that the Augustan reform was instituted in 8 BC. Several solutions have been proposed, which are summarised in the following table. The table shows for each solution the implied proleptic Julian date for the first day of Caesar's reformed calendar (Kal. Ian. AUC 709) and the first Julian date in which the Roman calendar date matches the proleptic Julian calendar after the completion of Augustus' reform.

Scholar Date Triennial leap years (BC) Leap year resumes First Julian day First aligned day
Scaliger[29] 1583 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9
AD 8
2 Jan. 45 BC
25 Feb. AD 4
Bünting[30] 1590 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12
AD 4
1 Jan. 45 BC
25 Feb. 1 BC
Christmann[30][31] 1590 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10
AD 7
2 Jan. 45 BC
25 Feb. AD 4
Harriot[30] after 1610 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10
AD 4
1 Jan. 45 BC
25 Feb. 1 BC
Kepler[32] 1614 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10
AD 8
2 Jan. 45 BC
25 Feb. AD 4
Ideler[33] 1825 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12, 9
AD 8
1 Jan. 45 BC
<center>25 Feb. AD 4
Matzat[34] 1883 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11
AD 4
1 Jan. 45 BC
25 Feb. 1 BC
Soltau[35] 1889 45, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11
AD 8
2 Jan. 45 BC
25 Feb. AD 4
Radke[36] 1960 45, 42, 39, 36, 33, 30, 27, 24, 21, 18, 15, 12
AD 4
1 Jan. 45 BC
25 Feb. 1 BC
Bennett[37] 2003 44, 41, 38, 35, 32, 29, 26, 23, 20, 17, 14, 11, 8
AD 4
31 Dec. 46 BC
25 Feb. 1 BC

Scaliger's proposal is the most widely accepted solution. It closely matches Macrobius' description and results in a calendar year and leap year cycle which exactly matches the proleptic Julian calendar at the time of Caesar's reform, except for his belief that the first reformed year, 45 BC, was not a leap year. Although some scholars, including Mommsen, support Ideler's view that 45 BC was a leap year, Brind'Amour has proved that there was only one bissextile day before 41 BC.[38]

All proposals which end the triennial cycle before 9 BC are provably incorrect. The Asian calendar reform[39] decreed by the proconsul Paullus Fabius Maximus aligned the calendar of the Asian province to the Roman calendar with a New Year falling on Augustus' birthday. It cannot have taken effect any earlier than 9 BC, and the decree states that the first reformed year was a leap year in a triennial cycle.

In 1999, an Egyptian papyrus was published that gives an ephemeris table for 24 BC with both Roman and Egyptian dates.[27] While the Egyptian and lunar synchronisms match the Roman dates on the proleptic Julian calendar, they do not match them on any previously proposed solution for the triennial cycle. One suggested resolution of this problem, which matches the data of the papyrus, is a new triennial sequence, in which the triennial leap years started in 44 BC and ended in 8 BC, with leap years resuming in AD 4.

Month namesEdit

The Julian reform did not immediately cause the names of any months to be changed. The old intercalary month was abolished and replaced with a single intercalary day at the same point (i.e. five days before the end of February). January continued to be the first month of the year.

The Romans later renamed months after Julius Caesar and Augustus, renaming Quintilis as "Iulius" (July)[2] in 44 BC and Sextilis as "Augustus" (August) in 8 BC. Quintilis was renamed to honour Caesar because it was the month of his birth.[40] According to a senatus consultum quoted by Macrobius, Sextilis was renamed to honour Augustus because several of the most significant events in his rise to power, culminating in the fall of Alexandria, occurred in that month.[41]

Other months were renamed by other emperors, but apparently none of the later changes survived their deaths. In AD 37, Caligula renamed September as "Germanicus" after his father;[42] in AD 65, Nero renamed April as "Neroneus", May as "Claudius" and June as "Germanicus";[43] and in AD 84 Domitian renamed September as "Germanicus" and October as "Domitianus".[44] Commodus was unique in renaming all twelve months after his own adopted names (January to December): "Amazonius", "Invictus", "Felix", "Pius", "Lucius", "Aelius", "Aurelius", "Commodus", "Augustus", "Herculeus", "Romanus", and "Exsuperatorius".[45] The emperor Tacitus is said to have ordered that September, the month of his birth and accession, be renamed after him, but the story is doubtful since he did not become emperor before November 275.[46] Other name changes were proposed but were never implemented. Tiberius rejected a senatorial proposal to rename September as "Tiberius" and October as "Livius", after his mother Livia.[47] Antoninus Pius rejected a senatorial decree renaming September as "Antoninus" and November as "Faustina", after his empress.[48] Similar honorific months were implemented in many of the provincial calendars that were aligned to the Julian calendar.[49]

Much more lasting than the ephemeral month names of the post-Augustan Roman emperors were the names introduced by Charlemagne.[50] He renamed all of the months agriculturally into Old High German. They were used until the 15th century, over 700 years after his rule, and continued with some modifications until the late 18th century in Germany and in the Netherlands. The names (January to December) were: Wintarmanoth (winter month), Hornung (the month when the male red deer sheds its antlers), Lentzinmanoth (Lent month), Ostarmanoth (Easter month), Wonnemanoth (love-making month), Brachmanoth (plowing month), Heuvimanoth (hay month), Aranmanoth (harvest month), Witumanoth (wood month), Windumemanoth (vintage month), Herbistmanoth (autumn/harvest month), and Heilagmanoth (holy month).

The calendar month names used in western and northern Europe, in Byzantium, and by the Berbers, were derived from the Latin names. However, in eastern Europe older seasonal month names continued to be used into the 19th century, and in some cases are still in use, in many languages, including: Belarusian, Bulgarian, Croatian, Czech, Finnish, Georgian, Lithuanian, Macedonian, Polish, Romanian, Slovene, Ukrainian. When the Ottoman empire adopted the Rumi calendar, the month names reflected Ottoman tradition.

Year numberingEdit

The principal method that the Romans used to identify a year for dating purposes was to name it after the two consuls who took office in it. Since 153 BC, they had taken office on January 1, the start of the calendar year, and Julius Caesar did not change the beginning of either year. Thus this consular year was an eponymous or named year. In addition to consular years, the Romans sometimes used the regnal year of the emperor, and by the late 4th century documents were also being dated according to the 15-year cycle of the indiction. In 537, Justinian required that henceforth the date must include the name of the emperor and his regnal year, in addition to the indiction and the consul, while also allowing the use of local eras.

In 309 and 310, and from time to time thereafter, no consuls were appointed.[51] When this happened, the consular date was given a count of years since the last consul (so-called "post-consular" dating). After 541, only the reigning emperor held the consulate, typically for only one year in his reign, and so post-consular dating became the norm. Similar post-consular dates were also known in the West in the early 6th century. The system of consular dating, long obsolete, was formally abolished in the law code of Leo VI, issued in 888.

Only rarely did the Romans number the year from the founding of the city (of Rome), ab urbe condita (AUC). This method was used by Roman historians to determine the number of years from one event to another, not to date a year. Different historians had several different dates for the founding. The Fasti Capitolini, an inscription containing an official list of the consuls which was published by Augustus, used an epoch of 752 BC. The epoch used by Varro, 753 BC, has been adopted by modern historians. Indeed, Renaissance editors often added it to the manuscripts that they published, giving the false impression that the Romans numbered their years. Most modern historians tacitly assume that it began on the day the consuls took office, and ancient documents such as the Fasti Capitolini which use other AUC systems do so in the same way. However, Censorinus, writing in the 3rd century AD, states that, in his time, the AUC year began with the Parilia, celebrated on April 21, which was regarded as the actual anniversary of the foundation of Rome.[52]

While the Julian reform applied originally to the Roman calendar, many of the other calendars then used in the Roman Empire were aligned with the reformed calendar under Augustus. This led to the adoption of local eras for the Julian calendar or its local equivalent, such as the Era of Actium and the Spanish Era, some of which were used for a considerable time.[53] Perhaps the best known is the Era of Martyrs, sometimes also called Anno Diocletiani (after Diocletian), which was associated with the Alexandrian calendar and often used by the Alexandrian Christians to number their Easters during the 4th and 5th centuries, and continues to be used by the Coptic and Ethiopian churches, as well as influencing the modern Ethiopian calendar.

In the Eastern Mediterranean, the efforts of Christian chronographers such as Annianus of Alexandria to date the Biblical creation of the world led to the introduction of Anno Mundi eras based on this event.[54] The most important of these was the Etos Kosmou, used throughout the Byzantine world from the 10th century and in Russia until 1700. In the West, the kingdoms succeeding the empire initially used indictions and regnal years, alone or in combination. The chronicler Prosper of Aquitaine, in the fifth century, used an era dated from the Passion of Christ, but this era was not widely adopted. Dionysius Exiguus proposed the system of Anno Domini in 525. This era gradually spread through the western Christian world, once the system was adopted by Bede.

The Julian calendar was also used in some Muslim countries. The Rumi calendar, the Julian calendar used in the later years of the Ottoman Empire, adopted an era derived from the lunar AH year equivalent to AD 1840, i.e. the effective Rumi epoch was AD 585. In recent years, some users of the Berber calendar have adopted an era starting in 950 BC, the approximate date that the Libyan pharoah Sheshonq I came to power in Egypt.

New Year's DayEdit

The Roman calendar began the year on January 1, and this remained the start of the year after the Julian reform. However, even after local calendars were aligned to the Julian calendar, they started the new year on different dates. The Alexandrian calendar in Egypt started on August 29 (August 30 after an Alexandrian leap year). Several local provincial calendars were aligned to start on the birthday of Augustus, September 23. The indiction caused the Byzantine year, which used the Julian calendar, to begin on September 1; this date is still used in the Eastern Orthodox Church for the beginning of the liturgical year. When the Julian calendar was adopted in AD 988 by Vladimir I of Kiev, the year was numbered Anno Mundi 6496, beginning on March 1, six months after the start of the Byzantine Anno Mundi year with the same number. In 1492 (AM 7000), Ivan III, according to church tradition, realigned the start of the year to September 1, so that AM 7000 only lasted for six months in Russia, from March 1 to August 31, 1492.[55]

During the Middle Ages January 1 retained the name New Year's Day (or an equivalent name) in all Western European countries (affiliated with the Roman Catholic Church), since the medieval calendar continued to display the months from January to December (in twelve columns containing 28 to 31 days each), just as the Romans had. However, most of those countries began their numbered year on December 25 (the Nativity of Jesus), March 25 (the Incarnation of Jesus, approximating the vernal equinox), or even Easter, as in France (see the Liturgical year article for more details).

In Anglo-Saxon England, the year most commonly began on December 25, which, as the winter solstice, had marked the start of the year in pagan times, though March 25 is occasionally documented in the 11th century. Sometimes the start of the year was reckoned as September 24, the start of the so-called "western indiction" introduced by Bede.[56] These practices changed after the Norman conquest. From 1087 to 1154 the English year began on January 1, and from 1155 to 1751 on March 25.[57] Even before 1752, January 1 was sometimes treated as the start of the new year – for example by Pepys[58] – while the "year starting 25th March was called the Civil or Legal Year".[59] To reduce misunderstandings on the date, it was not uncommon in parish registers for a new year heading after March 24, for example 1661, to have another heading at the end of the following December indicating "1661/62". This was to explain to the reader that the year was 1661 Old Style and 1662 New Style.[60]

Most Western European countries shifted the first day of their numbered year to January 1 while they were still using the Julian calendar, before they adopted the Gregorian calendar, many during the 16th century. The following table shows the years in which various countries adopted January 1 as the start of the year. Eastern European countries, with populations showing allegiance to the Orthodox Church, began the year on September 1 from about 988. The Rumi calendar used in the Ottoman empire began the civil year on March 1 until 1918.

Country Year starting
January 1[61][62]
Adoption of
new calendar
Republic of Venice 1522 1582
Holy Roman Empire[63] 1544 1582
Spain, Portugal 1556 1582
Prussia, Denmark/Norway 1559 1700
Sweden 1559 1753[64]
France 1564 1582
Southern Netherlands 1576[65] 1582
Lorraine 1579 1760
Holland, Zeeland 1583 1582
Dutch Republic except
Holland and Zeeland
1583 1700
Scotland 1600 1752
Russia 1700 1918
Tuscany 1721 1750
British Empire excluding Scotland 1752 1752[66]
Serbia 1804 1918
Ottoman Empire (Turkey)[67] 1918 1917

From Julian to GregorianEdit

Main article: Gregorian calendar

The Julian calendar was in general use in Europe and Northern Africa until 1582, when Pope Gregory XIII promulgated the Gregorian calendar. Reform was required because too many leap days are added with respect to the astronomical seasons on the Julian scheme. On average, the astronomical solstices and the equinoxes advance by about 11 minutes per year against the Julian year. As a result, the calculated date of Easter gradually moved out of aligment with the March equinox. While Hipparchus and presumably Sosigenes were aware of the discrepancy, although not of its correct value, it was evidently felt to be of little importance at the time of the Julian reform. However, it accumulated significantly over time: the Julian calendar gained a day about every 134 years. By 1582, it was ten days out of alignment from where it supposedly had been in 325 during the Council of Nicaea.

The Gregorian calendar was soon adopted by most Catholic countries (e.g. Spain, Portugal, Poland, most of Italy). Protestant countries followed later, and the countries of Eastern Europe adopted the "new calendar" even later. In the British Empire (including the American colonies), Wednesday September 2, 1752 was followed by Thursday September 14, 1752. For 12 years from 1700 Sweden used a modified Julian calendar, and adopted the Gregorian calendar in 1753, but Russia remained on the Julian calendar until 1918 (February 1 became February 14), while {WPlink|Greece}} continued to use it until March 1, 1923 (Gregorian).[68]

Since the Julian and Gregorian calendars were long used simultaneously, although in different places, calendar dates in the transition period are often ambiguous, unless it is specified which calendar was being used. In some circumstances, double dates might be used, one in each calendar. The notation "Old Style" (OS) is sometimes used to indicate a date in the Julian calendar, as opposed to "New Style" (NS), which either represents the Julian date with the start of the year as January 1 or a full mapping onto the Gregorian calendar. This notation is used to clarify dates from countries which continued to use the Julian calendar after the Gregorian reform, such as Great Britain, which did not switch to the reformed calendar until 1752, or Russia, which did not switch until 1918.

Throughout the long transition period, the Julian calendar has continued to diverge from the Gregorian. This has happened in whole-day steps, as dropped leap-years on certain centennial years in the Gregorian calendar continued to be leap years in the Julian calendar. Thus, in the year 1700 the difference increased to 11 days after Feb. 28 (Gregorian); in 1800, 12; and in 1900, 13. Since 2000 was a leap year according to the Gregorian calendar, the Julian calendar remained in step with it: February 29, 2000 (Julian) fell on March 13 (Gregorian). This difference will persist through the last day of February, 2100 (Julian), which is not a Gregorian leap year, but is a Julian leap year. Monday March 1, 2100 (Julian) falls on Monday March 15, 2100 (Gregorian), a full two-week discrepancy.[69]

Eastern Orthodox usageEdit

File:Bogojavlenie.jpg

Although all Eastern Orthodox countries (most of them in Eastern or Southeastern Europe) had adopted the Gregorian calendar by 1924, their national churches had not. The "Revised Julian calendar" was proposed during a synod in Constantinople in May 1923, consisting of a solar part which was and will be identical to the Gregorian calendar until the year 2800, and a lunar part which calculated Pascha (Easter) astronomically at Jerusalem. All Orthodox churches refused to accept the lunar part, so almost all Orthodox churches continue to celebrate Pascha according to the Julian calendar (with the exception of the Estonian Orthodox Church.[70] and the Finnish Orthodox Church)[71]

The solar part of the Revised Julian calendar was accepted by only some Orthodox churches. Those that did accept it, with hope for improved dialogue and negotiations with the Western denominations, were the Ecumenical Patriarchate of Constantinople, the Patriarchates of Alexandria, Antioch, the Orthodox Churches of Greece, Cyprus, Romania, Poland, Bulgaria (the last in 1963), and the Orthodox Church in America (although some OCA parishes are permitted to use the Julian calendar). Thus these churches celebrate the Nativity on the same day that Western Christians do, December 25 Gregorian until 2800. The Orthodox Churches of Jerusalem, Russia, Serbia, Macedonia, Georgia, Ukraine, and the Greek Old Calendarists and other groups continue to use the Julian calendar, thus they celebrate the Nativity on December 25 Julian (which is January 7 Gregorian until 2100). The Russian Orthodox Church has some parishes in the West which celebrate the Nativity on December 25 Gregorian. Parishes of the Orthodox Church in America Bulgarian Diocese, both before and after the 1976 transfer of that diocese from the Russian Orthodox Church Outside Russia to the Orthodox Church in America, were permitted to use the December 25 Gregorian date. Some Old Calendarist groups which stand in opposition to the state churches of their homelands will use the Great Feast of the Theophany (January 6 Julian/January 19 Gregorian) as a day for religious processions and the Great Blessing of Waters, to publicize their cause.

The Oriental Orthodox Churches generally use the local calendar of their homelands. However, when calculating the Nativity Feast, most observe the Julian calendar. This was traditionally for the sake of unity throughout Christendom. In the West, some Oriental Orthodox Churches either use the Gregorian calendar or are permitted to observe the Nativity according to it. The Armenian Apostolic Orthodox Church celebrates the Nativity as part of the Feast of Theophany according to its traditional calendar.

See alsoEdit

NotesEdit

  1. Towards a Common Date of Easter. (March 5–10). World Council of Churches/Middle East Council of Churches Consultation, Aleppo, Syria.
  2. 2.0 2.1 2.2 The letter J was not invented until the 16th century.
  3. The spelling Quinctilis is also attested; see page 669 of The Oxford Companion to the Year.
  4. Blackburn, B. & Holford-Strevens, L. The Oxford Companion to the Year. Oxford University press, 1999, reprinted with corrections, 2003. p. 669-70.
  5. Censorinus, De die natali 20.7 (Latin)
  6. Varro, On Agriculture I.1.28
  7. Pliny, Natural History: (Book 18, LIX / LXVI / LXVIII / LXXIV)
  8. Lucan, Pharsalia: Book 10
  9. Émile Biémont, Rythmes du temps, astronomie et calendriers, éd. De Boeck (Bruxelles), 2000 (ISBN 2-8041-3287-0), p. 224
  10. Suetonius, Caesar 52.1
  11. Plutarch, Lives of the Noble Grecians and Romans: Caesar 59.
  12. Pliny, Natural History: (Book 18, LVII)
  13. Encyclopædia Britannica Sosigenes of Alexandria.
  14. Macrobius, Saturnalia I.14.2 (Latin).
  15. It is not known why he decided that 67 was the correct number of days to add. Ideler suggested (Handbuch der mathematischen und technischen Chronologie II 123-125) that he intended to align the winter solstice to a traditional date of December 25. The number may compensate for three omitted intercalary months (67 = 22+23+22). It also made the distance from March 1, 46 BC, the original New Years Day in the Roman calendar, to January 1, 45 BC 365 days.
  16. E.g. "... we have a sidelight on what was involved in "the year of confusion" as it was called. According to Dion Cassius, the historian, there was a governor in Gaul who insisted that, in the lengthened year, two months' extra taxes should be paid! The extra months were called Undecimber and Duodecimber." (P. W. Wilson, The romance of the calendar (New York, 1937), 112). The eponymous dating of the cited passage (Dio Cassius 54.21) shows that it actually refers to an event of 15 BC, not 46 BC.
  17. J. Rüpke, The Roman Calendar from Numa to Constantine: Time, History and the Fasti, 117f., suggests, based on the ritual structures of the calendar, that 5 days were added to November and that the two intercalary months each had 31 days, with Nones and Ides on the 7th and 15th.
  18. William Smith, Dictionary of Greek and Roman Antiquities: Year of Julius Caesar), following Ideler, interprets Macrobius, Saturnalia 1.14.13 (Latin) to mean that Caesar decreed that the first day of the new calendar began with the new moon which fell on the night of January 1-2, 45 BC. (The new moon was on January 2, 45 BC (in the Proleptic Julian calendar) at 00:21 UTC, according to IMCCE (a branch of the Paris Observatory): Phases of the moon (between −4000 and +2500).) However, more recent studies of the manuscripts have shown that the word on which this is based, which was formerly read as lunam, should be read as linam, meaning that Macrobius was simply stating that Caesar published an edict giving the revised calendar — see e.g. p.99 in the translation of Macrobius by P. Davies. Smith gives no source or justification for his other speculation that Caesar originally intended to commence the year precisely with the winter solstice.
  19. Macrobius, Saturnalia 14.9 (Latin). Exceptionally, the extra day in April was inserted as the 26th, a.d. VI Kal. Mai. in the Julian calendar, in order to avoid adding a day to the Floralia, which ran from a.d. IV Kal. Mai (27th day of April in the pre-Julian calendar) to a.d. V Non. Mai.
  20. Macrobius, Saturnalia 1.14.12 (Latin).
  21. A. K. Michels, The Calendar of the Roman Republic Appendix II; J. Rüpke, The Roman Calendar from Numa to Constantine 113-114, 126-132, 147.
  22. W. Sternkopf, "Das Bissextum", (JCP 41 (1895) 718–733).
  23. Justinian, Digest 50.16.98.
  24. Dio Cassius 48.33.4, 60.24.7; C. J. Bennett, "The Imperial Nundinal Cycle", Zeitschrift für Papyrologie und Epigraphik 147 (2004) 175-179.
  25. Roscoe Lamont, "The Roman calendar and its reformation by Julius Caesar", Popular Astronomy 27 (1919) 583–595. Sacrobosco's theory is discussed on pages 585–587.
  26. Roman Republican calendar
  27. 27.0 27.1 A. R. Jones, "Calendrica II: Date Equations from the Reign of Augustus", Zeitschrift fűr Papyrologie und Epigraphik 129 (2000) 159-166.
  28. Macrobius, Saturnalia 1.14.13-15 (Latin); Nautical Almanac Offices of the United Kingdom and the United States. (1961). Explanatory Supplement to the Ephemeris London: Her Majesty's Stationery Office. p. 410–1.
  29. J. J. Scaliger, De emendatione temporum (Paris, 1583), 159, 238.
  30. 30.0 30.1 30.2 For Bünting, Christmann and Harriot see Harriot's comparative table reproduced by Simon Cassidy (Fig. 6).
  31. J. Christmann Muhamedis Alfragani arabis chronologica et astronomica elementa (Frankfurt, 1590), 173. His argument proposed that Caesar had intended leap years to be accounted from 46 BC, the year of Caesar's decree, and not 45 BC.
  32. J. Kepler, De Vero Anno Quo Æternus Dei Filius Humanan Naturam in Utero Benedictæ Virginis Mariæ Assumpsit (Frankfurt, 1614) Cap. V, repub. in F. Hammer (ed.), Johannes Keplers Gesammelte Werke (Berlin, 1938) V 28.
  33. C. L. Ideler, Handbuch der mathematischen und technischen Chronologie (Berlin, 1825) II 130-131. He argued that Caesar would have enforced the bissextile day by introducing it in his first reformed year. T. E. Mommsen, Die Römische Chronologie bis auf Caesar (Berlin, 1859) 282-299, provided additional circumstantial arguments.
  34. H. Matzat, Römische Chronologie I (Berlin, 1883), 13-18. His argument rested on Dio Cassius 48.33.4 which mentions a leap day inserted in 41 BC, "contrary to the (i.e. Caesar's) rule", in order to avoid having a market day on the first day of 40 BC. Dio stated that this leap day was compensated "later". Matzat proposed this was done by omitting a scheduled leap day in 40 BC, rather than by omitting a day from an ordinary year.
  35. W. Soltau, Römische Chronologie (Freiburg, 1889) 170-173. He accepted Matzat's phase of the triennial cycle but argued that it was absurd to suppose that Caesar would have made the second Julian year a leap year and that the 36 years had to be accounted from 45 BC.
  36. G. Radke, "Die falsche Schaltung nach Caesars Tode", Rheinisches Museum für Philologie, Geschichte und griechische Philosophie 103 (1960) 178-185. He proposed that Augustus initiated the reform when he became pontifex maximus in 12 BC.
  37. C. J. Bennett, "The Early Augustan Calendars in Rome and Egypt", Zeitschrift fűr Papyrologie und Epigraphik 142 (2003) 221-240 and "The Early Augustan Calendars in Rome and Egypt: Addenda et Corrigenda", Zeitschrift fűr Papyrologie und Epigraphik 147 (2004) 165-168; see also Chris Bennett, A.U.C. 730 = 24 B.C. (Egyptian papyrus).
  38. P. Brind'Amour, Le calendrier romain (Ottawa, 1983), 45-46.
  39. OGIS 458 (Greek); U. Laffi, "Le iscrizioni relative all'introduzione nel 9 a.c. del nuovo calendario della provincia d'Asia", Studi Classici e Orientali 16 (1967) 5-99.
  40. Suetonius, Caesar 76.1
  41. Suetonius, Augustus 31.2; Macrobius, Saturnalia 1.12.35 (Latin)
  42. Suetonius, Caligula 15.2.
  43. Tacitus, Annals 15.74, 16.12.
  44. Suetonius, Domitian 13.3.
  45. Dio Cassius 73.15.3.
  46. Historia Augusta, Tacitus 13.6. On the chronology see R. McMahon, Tacitus
  47. Suetonius, Tiberius 26.2.
  48. Historia Augusta, Antoninus Pius 10.1.
  49. Surveyed in K. Scott, Honorific Months, Yale Classical Studies 2 (1931) 201-278.
  50. Einhard, Life of Charlemagne, 29.
  51. Chronography of AD 354
  52. Censorinus De die natali 21.6 (Latin). Because the festivities associated with the Parilia conflicted with the solemnity of Lent, which was observed until the Saturday before Easter Sunday, the early Roman church did not celebrate Easter after April 21 — Charles W. Jones, "Development of the Latin Ecclesiastical calendar", Bedae Opera de Temporibus (1943), 1–122, p.28.
  53. For a partial survey see A. E. Samuel, Greek and Roman Chronology: calendars and years in classical antiquity (Munich, 1972), 245ff. Samuel introduces his survey by saying: "The number of eras which came into use and then expired to be replaced by yet other eras during Hellenistic and Roman times is probably not infinite, but I have not been able to find the end of them." Anatolian eras are exhaustively surveyed in W. Leschhorn, Antike Ären: Zeitrechnung, Politik und Geschichte im Schwarzmeerraum und in Kleinasien nördlich des Tauros (Stuttgart, 1993).
  54. A. A. Mosshammer, The Easter Computus and the Origins of the Christian Era (Oxford, 2008) 27-29.
  55. История календаря в России и в СССР (Calendar history in Russia and in the USSR)
  56. M. L. R. Beaven, "The Regnal Dates of Alfred, Edward the Elder, and Athelstan", English Historical Review 32 (1917) 517-531; idem, "The Beginning of the Year in the Alfredian Chronicle (866-87)", English Historical Review 33 (1918) 328-342.
  57. Catholic Encyclopedia, General Chronology (Beginning of the Year).
  58. Pepys Diary, "I sat down to end my journell for this year, ..."
  59. Spathaky, Mike Old Style New Style dates and the change to the Gregorian calendar.
  60. Spathaky, Mike Old Style New Style dates and the change to the Gregorian calendar. "An oblique stroke is by far the most usual indicator, but sometimes the alternative final figures of the year are written above and below a horizontal line, as in a fraction (a form which cannot easily be reproduced here in ASCII text). Very occasionally a hyphen is used, as 1733-34."
  61. John J. Bond, "Commencement of the Year", Handy-book of rules and tables for verifying dates with the Christian era, (London: 1875), 91–101.
  62. Mike Spathaky Old Style and New Style Dates and the change to the Gregorian Calendar: A summary for genealogists
  63. The source has Germany, whose current area during the sixteenth century was a major part of the Holy Roman Empire, a religiously divided confederation. The source is unclear as to whether all or only parts of the country made the change. In general, Roman Catholic countries made the change a few decades before Protestant countries did.
  64. Sweden's conversion is complicated and took much of the first half of the 18th century. See Swedish calendar.
  65. Per decree of June 16, 1575. Hermann Grotefend, "Osteranfang" (Easter beginning), Zeitrechnung de Deutschen Mittelalters und der Neuzeit (Chronology of the German Middle Ages and modern times) (1891–1898)
  66. 1751 in England only lasted from March 25 to December 31. The following dates January 1 to March 24 which would have concluded 1751 became part of 1752 when the beginning of the numbered year was changed from March 25 to January 1.
  67. See Rumi calendar for details. It is often stated that Turkey adopted the Gregorian calendar in 1926 or 1927. This refers to the adoption of the Anno domini era.
  68. Nautical almanac offices of the United Kingdom and United States, Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac (London: Her Majesty's Stationery Office, 1961), 413–6. Note that the date given there for Greece -- 10/March 24, 1924 -- is actually the date that the Church of Greece adopted the Revised Julian calendar; see Social Security Administration publication GN 00307.180 - Gregorian/Julian calendar. Also, areas of Russia not under Bolshevik control at the start of 1918 adopted the Gregorian calendar on different dates; see the summary at Toke Nørby, The Perpetual Calendar..
  69. Fourmilab Calendar Converter webpage
  70. "Estonian Orthodox Church (Estonian Events)". Vancouveri Eesti Apostliku Õigeusu Kirik. 2010. http://www.estonianevents.com/estonianorthodoxchurch. 
  71. Bishop Photius of Triaditsa, "The 70th Anniversary of the Pan-Orthodox Congress, Part II of II"; "HELSINGIN SANOMAT (International edition)". September 21, 2007. http://www.hs.fi/english/article/Moscow-affiliated+Russian+Orthodox+church+grows+in+Helsinki/1135230488329. 

BibliographyEdit

  • Blackburn, Bonnie; Holford-Strevens, Leofranc (2003, reprinted with corrections). The Oxford Companion to the Year. Oxford University Press. 
  • Nautical Almanac Offices of the United Kingdom and the United States of America (1961). Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. London: Her Majesty's Stationery Office. 

External linksEdit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.